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Abstract 10 

Muscle synergy analyses are used to increase our understanding of motor control. Spatially fixed 11 

synergy vectors coordinate multiple co-active muscles through activation commands, known as 12 

activation coefficients. To better understand motor learning, it is crucial to know how synergy 13 

recruitment varies during a learning task and different levels of movement proficiency. Within one 14 

session participants walked on a line, a beam, and learned to walk on a tightrope – tasks that 15 

represent different levels of proficiency. Muscle synergies were extracted over all conditions and the 16 

number of synergies was determined through the knee-point of the total variance accounted for 17 

(tVAF) curve. We found that the tVAF of one synergy decreased with task proficiency (line < beam 18 

< tightrope). Additionally, trial-to-trial similarity and distinctness of synergy activation coefficients 19 

increased with proficiency and after a learning process. We conclude that precise adjustment and 20 

refinement of synergy activation coefficients play a crucial role in motor learning.  21 
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1 Introduction 22 

The underlying mechanisms, by which the central nervous system controls movements and adapts 23 

during learning new movements, are still not fully understood. One common theory in in the field of 24 

motor control implies the idea of muscle synergies [1-3]. Put simply, muscle synergies refer to 25 

groups of co-active muscles, termed synergy vectors or motor modules, which are recruited by 26 

activation coefficients, corresponding to time-dependent control inputs of the central nervous system 27 

[1, 3]. In line with Bernstein’s levels of movement construction [4, 5], this simplifies the complex 28 

coordination of the large number of muscles in the human body by controlling the activation of a 29 

limited number of spatially fixed, and temporally independent motor modules, rather than 30 

individually controlling each muscle.  31 

Over the last two decades, muscle synergies, extracted from electromyography (EMG) recordings 32 

have been studied in healthy and pathological populations across various tasks. These studies have 33 

demonstrated the recruitment of similar motor modules in different movements, strengthening the 34 

concept of spatially fixed synergy vectors. So-called shared synergies describe similar movement 35 

fragments, which correspond to physical subtasks with the same mechanical goals [6]. For example, 36 

shared synergies were found between walking and cycling [7], walking and slipping [6], walking and 37 

standing reactive balance tasks [8], stepping and non-stepping postural behaviors [9], seated and 38 

standing cycling [10, 11] or overground and treadmill running [12]. To describe the complexity of 39 

motor control, the total variance in muscle activity accounted for (tVAF) by a given number of 40 

synergies, and the number of needed synergies (NoS) are widely utilized parameters. For instance, 41 

less synergies and higher tVAF – indicating lower motor complexity – were found in individuals 42 

with cerebral palsy [13, 14] or stroke [15, 16] compared to unimpaired populations, and in younger 43 

compared to older adults during walking [17]. 44 

It is generally accepted, that generating identical movements on successive attempts is impossible, 45 

due to an inherently noisy nervous system [18]. This noise can arise from either the central nervous 46 

system through movement planning or peripherical structures (i.e.: force production by muscles). In 47 

2017, Dhawale et al. [19] reviewed recent studies regarding movement variability in motor learning, 48 

and concluded, that variability in the planning space is more likely a feature of motor system 49 

plasticity that drives motor learning, rather than unwanted noise. Moreover, this trial-to-trial 50 

variability decreases with increasing task proficiency [19-22], aligning with the principles of 51 

reinforcement learning [19]. Reinforcement learning theory suggests that a system learns new 52 

behaviors through trial-and-error [23]. Motor commands that lead to favorable outcomes (i.e.: 53 

successful execution of a movement task) are repeated, reinforced, and refined in subsequent 54 

attempts. In a study by Wu et al. [20] participants were trained to replicate a curve shape using hand 55 

trajectories in a reaching task. They found that individuals who displayed higher kinematic variability 56 

prior to training showed faster rates of learning. Hence it seems that variability during the learning 57 

process increases the likelihood of finding the optimal motor command. 58 

To date, only few studies have examined the role of muscle synergies in movement learning. For 59 

instance, Sylos-Labini et al. [24] compared walking trial-to-trial variability of temporal synergy 60 

activations across different age groups, ranging from neonates to adults. They observed a decrease in 61 

variability during locomotor development. Consistent with a prior study on locomotor development 62 

[25], authors revealed that motor complexity and the number of synergies increased with age. In 63 

adults, changes of activation coefficients variability correlated with changes in bowling scores across 64 

sessions [26]. Comparing professional ballet dancers with individuals without any dancing or 65 

gymnastics experience, Sawers et al. [27] revealed higher trial-to-trial similarity with higher beam 66 
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walking proficiency. Additionally, dancers showed lower variability within synergy vectors and 67 

higher spatial distinctness between synergy vectors. Similarly, dance-based rehabilitation in 68 

individuals with Parkinson’s disease improved the consistency and distinctness of synergy vectors 69 

[28]. All the mentioned studies were limited by either inter-participant variability [24, 29-32], or 70 

inter-session variability [31-33], which can be attributed to individual motor control differences and 71 

variations in skin-electrode impedance and electrode position. 72 

To the best of our knowledge, no study has yet examined changes in muscle synergies using a within-73 

participant, within-session protocol. Therefore, the present study addresses this research gap. Briefly, 74 

each participant walked on a line, a beam, and a tightrope. The choice of these three tasks was based 75 

on the progression from an easy, daily task with highest movement proficiency (line) to a more 76 

uncommon task that was still manageable for participants (beam) and finally to a new task, which 77 

could be learned within one data collection session (tightrope). The twofold aim of the study was to 78 

examine if motor complexity, trial-to-trial similarity of activation coefficient and activation 79 

coefficient distinctness differs: (1) between an early and a late stage of a learning process (i.e.: 80 

learning to walk on a tightrope); (2) between common and less common movement tasks – 81 

addressing movement proficiency. Subsequently, we investigated, if the contribution of synergies 82 

changes among learning or proficiency changes. The study primarily focused on muscle synergies, 83 

but trial-to-trial similarity of EMG envelopes and joint angles were also analyzed to gain a 84 

comprehensive understanding of variability in motor learning. Additionally, the study investigated 85 

whether the amount of muscle activity changes after learning, building on previous findings by 86 

Donath et al. [34], who showed decreased muscle activity after slackline training. We hypothesize 87 

that motor complexity, activation coefficient distinctness and trial-to-trial similarity of synergy 88 

activation, EMG envelopes, and joint angles (1) gets higher during learning, and (2) is higher in more 89 

common movements. Furthermore, the study hypothesizes that the amount of muscle activity 90 

decreases during learning (1) and is lower in more common movements (2). 91 

2 Materials and Methods 92 

2.1 Participants 93 

This study involved ten healthy participants (age: 25.2 ± 3.34 years; bodyweight: 69.9 ± 7.34 kg; 94 

height: 1.76 ± 0.09 m; body-mass-index: 22.63 ± 1.51; 6 men and 4 women) without neurological or 95 

orthopedic impairments, who were not able to walk on a slackline or tightrope beforehand. The study 96 

was approved by the ethics committee of the University of Vienna (reference number: 00820) and 97 

participants gave written informed consent. 98 

2.2 Experimental Setup and Data Collection 99 

Each participant walked under different tasks: (a) a line taped on the ground (LINE; length: 310 cm; 100 

width: 1.4 cm); (b) a beam (BEAM; length: 341.5 cm; width: 10 cm; height: 28.5cm) and (c) a 101 

tightrope (TIGHTROPE; length: 363 cm; diameter: 0.9 cm; height: 363 cm) spanned between two 102 

platforms (Figure 1). The learning process for walking on the TIGHTROPE was divided into two 103 

stages: TRfail and TRsucc. TRfail included the first five attempts where participants were able to 104 

perform at least one full gait-cycle of the right leg but were not able to successfully balance over the 105 

entire tightrope. TRsucc included the attempts where participants successfully balanced over the 106 

tightrope in four out of five consecutive attempts. A successful attempt was defined as walking over 107 

the whole tightrope and maintaining balance on the second platform. If a participant was able to 108 

successfully balance over the TIGHTROPE in two out of the first five attempts, the difficulty of the 109 

task was increased with visual constraints, by either an eye-patch over the left eye, or further by 110 
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closing both eyes (if two of the first five trials were successful with the eye-patch). The conditions 111 

were recorded in the following order: (1) LINE-walking (startLine), (2) BEAM-walking 112 

(startBEAM), (3) start of learning process on the TIGHTROPE (TRfail) until (4) the end of learning 113 

process (TRsucc), (5) BEAM-walking (endBEAM), and (6) Line-walking (endLINE). To ensure 114 

consistent visual constraints across tasks for later comparisons, five trials with opened eyes, an eye-115 

patch over the left eye and both eyes closed were recorded each time (start and end) for LINE and 116 

BEAM. As data from the first right stance phase was further analyzed, we aimed to minimize 117 

transient accelerations at the onset step [14, 17, 35], by instructing participants to start each trial with 118 

their left leg. Only the stance phase was analyzed, to neglect highly variable movement times 119 

between stance and swing phases across conditions [32, 36]. No additional constraints for pause time, 120 

step cadence, step length, or hints for walking over the TIGHTROPE were given, to provide self-121 

directed learning. 122 

 123 

Figure 1: Top image shows the upside-down gymnastics bench which was used for BEAM 124 

conditions. Bottom image shows the THIGHTROPE mounted on a rack between two platforms. 125 

Prior to the data collection, thirteen surface EMG sensors (eleven PicoEMG and two Mini Wave 126 

Infinity, Wave Plus wireless EMG system, Cometa, Milan, Italy) were placed on the trunk and right 127 

limb following the Seniam guidelines (Seniam.org) and recommendations from previous studies  [37-128 

39]: tibialis anterior (tib_abt), peroneus longus (per_long), soleus, gastrocnemius medialis 129 

(gast_med), vastus lateralis (vast_lat), rectus femoris (rect_fem), biceps femoris (bic_fem), 130 

semitendinosus (sem_tend), gluteus maximus (glut_max), rectus abdominis (rect_abd), extensor 131 

obliques (ext_obli), multifidus (multifid) and erector spinae iliocostalis (erec_spin). A baseline EMG 132 

signal of several seconds was collected (EMG_base) while participants lied in a supine and relaxed 133 

position on a massage table.  The standard Vicon Plug-in-Gait marker set (Vicon, Oxford, UK), 134 

including 21 reflective markers, were placed on the legs and the trunk of each participant [40]. The 135 

heel and toe markers were placed on the shoes of participants, similar to Paterson et al. [41]. A 12-136 

camera 3D motion capture system (Vicon, Oxford, UK) was used to record marker trajectories with a 137 

sampling rate of 200 Hz, EMG data with 1000 Hz and ground reaction forces of one force plate with 138 

1000 Hz (Kistler Instrumente, Winterthur, Switzerland), simultaneously. In addition, participants 139 

wore in-shoe force sensor soles (loadsol®, Novel, Munich, Germany), which were used to determine 140 

stance phases. Insoles data was captured with 200 Hz (loadsol-s android application version 1.7.63) 141 

on a mobile phone (Huawei P30 Lite, Huawei, Shenzhen, China) and brought to zero level every 5 to 142 

10 trials to minimize errors due to sensor drifts. Foot contact instances were determined by vertical 143 

contact forces over 30 Newton via custom scripts. Time synchronization between the Insole and 144 

Vicon data was achieved by participants stepping on a force plate at the beginning of each trial. The 145 

experimental data was captured and processed using Vicon Nexus 2.12 software (Vicon, Oxford, 146 

UK). Subsequent analyses were conducted using Gnu Octave version 6.2.0 [42] and MATLAB 147 

(R2022a, Mathworks Inc., Natick, USA). 148 
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2.3 EMG processing 149 

Raw EMG signals were high-pass filtered at 25 Hz (4th-order Butterworth zero lag filter) to remove 150 

movement artefacts [14, 43-45], demeaned, full-wave rectified and low-pass filtered at 7 Hz (4th-151 

order Butterworth zero lag filter), similar to previous gait studies [46-50]. The low-pass cutoff 152 

frequency of 7 Hz was chosen as a compromise between the different movement times 153 

(supplementary Figure 1). After filtering, baseline noise was removed by subtracting the root-mean-154 

square of the filtered EMG_base signal, to improve signal-to-noise ratio [51-54], and resulted 155 

negative values were set to zero. Based on a visual inspection of raw and filtered EMG envelopes, 156 

trials with artefacts were removed, resulting in four to five remaining trials per condition. Afterwards 157 

signals were time-normalized to 101 data points (100% of stance phase) and amplitude normalized to 158 

values between 0 and 1, where an amplitude of 1 was equal to the maximum activation amplitude of 159 

a muscle among all trials [16, 35, 36, 48, 55]. 160 

2.4 Synergy extraction and determining the number of synergies 161 

For each participant, processed EMG signals of trials from all conditions were concatenated [10, 56] 162 

and muscle synergies were extracted according to the spatial/synchronous synergy model. According 163 

to this model, motor control of muscle activations (EMG signals), is described by a linear 164 

combination of a fixed spatial synergy vector W and a time-varying activation coefficient C [4, 36, 165 

52].  Non-negative-matrix-factorization (NNMF) has been shown to be the most appropriate method 166 

for extracting muscle synergies in walking [50]. Therefore, we used the “nmf_bpas” octave function 167 

[57], an advanced algorithm of the classic NNMF [58-60] to extract one to twelve (number of 168 

muscles -1) muscle synergies. Instead of random inputs, the NNMF was initialized with outputs of 169 

the nonnegative single-value-decompensation with low-rank correction algorithm [61] to improve 170 

NNMF [52, 61-63]. Extracted synergy vectors were normalized to 1 based on their maximum values, 171 

and activation coefficients were multiplied by the same normalization values, to keep their product 172 

constant [64, 65]. More information regarding the synergy extracting procedure is provided in the 173 

supplementary material. 174 

The total variance accounted for (tVAF) was calculated for each number of extracted synergies (1 to 175 

12). It quantifies the reconstruction accuracy after the factorization, and is defined as the uncentered 176 

Pearson’s correlation in percentage [49]. To determine the number of synergies that represents motor 177 

control across all conditions (NoS), knee point analysis was employed [36, 44, 49, 52, 66]. The knee-178 

point (v) was defined as the point on the tVAF curve that exhibits the smallest angle among three 179 

adjacent points (v-1, v, v+1). This approach assumes that beyond the knee-point, only unstructured 180 

data or noise is explained by additional motor modules [66]. It was preferred over threshold-based 181 

methods, as it has been shown to perform better [49] and is not affected by different low-pass filter 182 

cutoff frequencies [44]. We further constrained our analysis by exclusively determining the knee-183 

point for synergies with a tVAF exceeding 95%. This widely used threshold [46, 49, 54, 56, 67-69] 184 

was added based on visually observing sharp jumps in some tVAF curves, likely caused by the split 185 

of a synergy due to salient features [70]. 186 

2.5 Assessment of trial-to-trial similarity 187 

The trial-to-trial similarity of synergy activation coefficients, EMG envelopes and joint angles were 188 

all quantified based on the same three parameters: the Pearson correlation coefficient (r), the 189 

maximum value of the normalized cross-correlation coefficient (rmax) and the lag time (lag% in % of 190 

the stance phase) where rmax occurred which represents the time shift between two curves. These 191 

parameters are widely used to quantify variabilities in synergy, EMG and kinematic waveforms [7, 192 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.19.558460doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558460
http://creativecommons.org/licenses/by-nd/4.0/


   muscle synergies during motor learning 

 
7 

10, 11, 64, 71-73]. We calculated them for every pairwise combination of trials in each condition 193 

within each synergy, muscle, and joint. The averaged value per condition represents the overall trial-194 

to-trial similarity for synergy activation coefficients, EMG envelopes and joint angles.  195 

2.6 Synergy analyses 196 

We computed the tVAF using the EMG signals, synergy vectors and activation coefficients of each 197 

condition. Then, tVAF of one synergy (tVAF1) and tVAF at NoS (tVAFNoS) were compared across 198 

conditions to evaluate movement complexity (tVAF1) and the goodness of reconstruction 199 

(tVAFNoS). The distinctness of activation coefficients was determined by calculating the average 200 

value of all pairwise combinations of activation coefficients from different synergies within each trial 201 

for each condition. High values of r and rmax, along with small time-shifts (lag%), indicate a 202 

similarity in timing and a substantial amount of overlapping in synergy activations [16, 62]. 203 

Additional to the overall trial-to-trial similarity of each condition, we aimed to reveal, if differences 204 

in the variability just occur in some synergies. To classify similar synergy vectors among 205 

participants, we used k-means clustering (kmeans function in Octave – see supplementary material) 206 

similar to recent synergy studies [24, 26, 30, 48, 74]. We computed the k-means clustering solution 207 

for a range of two to twelve clusters and repeated the process 100 times. For each repetition and each 208 

number of clusters, we calculated the average silhouette value [75]. The optimal number of clusters 209 

was then determined on the point at which the maximum silhouette values plateaued – indicating 210 

small within- and high between-cluster distances [26] (Figure 4). Trial-to-trial similarity parameters 211 

(r, rmax, lag%) were calculated for synergies within the same cluster, for each condition. For instance, 212 

if a cluster consisted of eight synergy vectors, the trial-to-trial similarity of that cluster was 213 

determined by averaging the trial-to-trial similarity values of the eight synergies. To examine the 214 

task-specific relevance of individual synergies, tVAF by each synergy was computed for every trial. 215 

These tVAF values were then averaged across synergies within the same cluster. 216 

2.7 EMG analyses 217 

To quantify changes in the amount of muscle activity, the root-mean-square (RMS) of the 218 

preprocessed EMG signals of every trial was calculated and averaged across trials of the same 219 

condition, within each muscle. Additionally, to the overall trial-to-trial similarity (section 2.5), 220 

correlation values were also averaged for each muscle to evaluate, if variability in activation patterns 221 

only occurred in some muscles (results provided in supplementary material). 222 

2.8 Kinematic analyses 223 

Joint angles were computed with OpenSim [76] using the recently introduced addBiomechanics.org 224 

application [77]. This application uses a bilevel optimization and enables to personalize 225 

musculoskeletal models and calculate joint angles in an easy and efficient way. We used the default 226 

option with the Rajagopal2015 model for human gait [78]. The computed joint angles were 227 

smoothened using a 6 Hz low-pass filter (4th-order Butterworth zero lag filter) and time normalized to 228 

101 datapoints of the stance phases. The following joint angles of the right leg and trunk were 229 

examined: ankle plantar-/dorsiflexion, knee flexion/extension, hip flexion/extension, hip ab-230 

/adduction, hip internal/external rotation, lumbar flexion/extension, lumbar medial/lateral bending, 231 

and lumbar internal/external rotation. In addition to the overall trial-to-trial similarity (section 2.5), 232 

correlation values were also averaged for each joint separately, to evaluate, if variability in 233 

kinematics only occurred in some joints (results provided in supplementary material). 234 
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2.9 Statistics 235 

We employed a two-way repeated measures ANOVA with TASK (LINE, BEAM, TIGHTROPE) and 236 

TIME as factors on all variables described above. The first time point (START) consisted of 237 

startLINE, startBEAM, and TRfail, while the second time point (END) included endLINE, 238 

endBEAM, and TRsucc. TASK was used to assess differences regarding task commonness – our 239 

second research question - including post hoc pairwise comparisons with Bonferroni correction. To 240 

address our first research question, i.e. changes during the learning process, – we calculated contrasts 241 

between TRfail and TRsucc. Furthermore, contrasts between startLINE and endLINE were examined 242 

as a baseline to assess the stability of the analyzed variable, as no differences were anticipated 243 

between the two LINE conditions. Additionally, contrasts between startBEAM and endBEAM were 244 

analyzed to explore potential transfer effects of learning from one balancing task (TIGHTROPE) to 245 

another (BEAM). Contrasts were conducted only if a significant difference was observed in any of 246 

the ANOVA outcomes (TASK, TIME, TASK*TIME). Prior, sphericity was checked with Mauchly-247 

test (if necessary, Greenhouse-Geisser correction was applied), and normal distribution was verified 248 

with Shapiro Wilk-test. If the requirement of normal distribution was violated, an aligned-rank-249 

transformation was performed. This transformation enabled us to conduct factorial ANOVA’s on 250 

nonparametric data [79-81] and was utilized with ARTool 2.1.2 software (Washington, USA). 251 

Statistical analyses were performed with JASP 0.17.2 (Amsterdam, Netherlands). The alpha level 252 

was set at 0.05, and the results were reported at three levels of significance: p < 0.05, p < 0.01, and p 253 

< 0.001. 254 

  255 
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3 Results 256 

Participants required 2.6 ± 1.4 attempts (range: 1 to 5) to perform their first complete gait-cycle with 257 

the right leg (TRfail) and 49.4 ± 22.8 attempts (range: 12 to 101) to complete the learning task 258 

(TRsucc). Two participants walked on the TIGHTROPE with visual constraints (1x eye-patch, 1x 259 

closed eyes). 260 

3.1 Muscle synergy analyses 261 

An average of 5.9 ± 1.1 NoS was determined among participants. For tVAF1 a significant effect of 262 

TASK (p < 0.001) was observed. Post hoc comparisons revealed that tVAF1 was higher in BEAM 263 

compared to LINE (p < 0.01) and TIGHTROPE was higher than both LINE and BEAM (p < 0.001). 264 

There were no significant differences in tVAFNoS. Regarding the distinctness of activation 265 

coefficients, the ANOVA revealed a significant effect of TASK for r (p < 0.05), where activation 266 

coefficients were more correlated to each other (p < 0.05) in TIGHTROPE compared to LINE and 267 

BEAM. There was no significant difference for rmax, but a significant effect of TASK (p < 0.001) and 268 

TIME (p < 0.05) in lag%. The lag% was higher in LINE than BEAM (p < 0.01) and TIGHTROPE 269 

had the lowest %lag (p < 0.001) (Figure 2). 270 

 271 

Figure 2: A: bars show the number of required synergies (NoS) for each participant (P1 – P10). B-C: 272 

the total variance accounted for one synergy (B: tVAF1) and NoS (C: tVAFNoS). D-F: Synergy 273 

activation coefficient distinctness measured by Pearson correlation (D: r), maximum cross-correlation 274 

coefficient (E: rmax) and lag at rmax (F: lag%). Violin plots: each colored circle represents one 275 

participant; thick lines represent mean values; white circles indicate median values; dark areas 276 

indicate quartiles. 277 

  278 
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Trial-to-trial similarity measured by r and rmax was affected by TASK (p < 0.001) and TIME (p < 279 

0.01). r and rmax was the highest in LINE, followed by BEAM (rmax: p < 0.01; r < 0.001) and lowest 280 

in TIGHTROPE (both: p < 0.001). Contrasts showed an increase in similarity from startBEAM to 281 

endBEAM (both: p < 0.05) and TRfail to TRsucc (rmax: p < 0.05; r: p < 0.001). There was no 282 

difference in lag% (Figure 3).  283 

 284 

Figure 3: Overall trial-to-trial similarity of synergy activation coefficients (C, top row), 285 

electromyography envelopes (EMG, middle row) and joint angles (bottom row), measured by 286 

Pearson correlation (r), maximum cross-correlation coefficient (rmax) and lag at rmax (lag%). Violin 287 

plots: each colored circle represents one participant; thick lines represent mean values; white circles 288 

indicate median values; dark areas indicate quartiles. 289 

Silhouette analyses yielded six clusters (Figure 4) which are indicated by # in the following 290 

paragraphs. Low tVAF values indicate low contribution of synergies to the condition. The tVAF of 291 

all clusters was significantly affected by TASK (#5: p < 0.05; #1, 3: p < 0.01; others: p < 0.001). In 292 

#4, tVAF of BEAM was lower than LINE (p < 0.05) and the lowest in TIGHTROPE (p < 0.001). For 293 

the other clusters, tVAF of TIGHTROPE was higher than BEAM (#5, 6: p < 0.05; #2: p < 0.001) and 294 

LINE (#1, 3, 5: p < 0.01; #2, 6: p < 0.001). In BEAM it was higher than LINE (#2: p < 0.01). For #2, 295 

ANOVA also revealed a significant effect of TIME (p < 0.05), with lower tVAF in START 296 

compared to END, and the interaction TASK × TIME (p < 0.01). In #6, contrasts showed a decrease 297 

of tVAF over time in BEAM (p < 0.05). 298 
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 299 

Figure 4: A: dashed lines show the average silhouette value for each clustering repetition (1 to 100). 300 

The arrow indicates the number of clusters, at which the maximum of averaged silhouette values 301 

among repetitions (solid line/circles) plateaued. B: sammon mapping [93] of the six clusters. Marker-302 

styles indicate different participants (P1 – P10), and marker-colors indicate different clusters. 303 

Numbers (1 to 6) indicate the position of the clusters’ centroids. 304 

Trial-to-trial similarity of cluster 1, 2, 4 and 5 was significantly affected by TASK in r and rmax  (rmax 305 

#5: p < 0.05; r #5: p < 0.01 others: p < 0.001), with higher LINE than TIGHTROPE for r (p < 0.001) 306 

and rmax (#5: p < 0.05; others: p < 0.001) and higher BEAM than TIGHTROPE for r (#5 p < 0.01; 307 

others: p < 0.001). rmax was higher in BEAM than TIGHTROPE in cluster 1 (p < 0.01), 2 and 4 (p < 308 

0.001). Correlation was higher in LINE than BEAM in cluster 1, 2 (r and rmax: p < 0.05) and 4 (r: p < 309 

0.01; rmax: p < 0.001). The lag% revealed a significant effect of TASK for cluster 1, 3, 4 and 5(#3: p 310 

< 0.05; #5: p < 0.05; #1, 4: p < 0.001). LINE had lower lag% than BEAM (#1: p < 0.05) and 311 

TIGHTROPE (#5: p < 0.01; #1, 4: p < 0.001). BEAM had lower lag% compared to TIGHTROPE 312 

(#1, 5: p < 0.01). Contrary, #3 had the lowest lag% in TIGHTROPE compared to the other two 313 

conditions (p < 0.05). 314 

Significant effects of TIME were found for r in cluster 1 (p < 0.05), for rmax in cluster 4 and 6 (p < 315 

0.05) and for lag% in cluster 4 (p < 0.05) with lower correlations and higher lag% in START 316 

compared to END. A significant effect of TASK × TIME was only found for r in cluster 4 (p < 0.05). 317 

Contrasts revealed a significant increase of r or rmax from startLINE to endLINE in cluster 6 (rmax: p < 318 

0.05), from startBEAM to endBEAM in cluster 2 (r: p < 0.01) and from TRfail to TRsucc in cluster 1 319 

(r: p < 0.05). 320 
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 321 

Figure 5: A: muscle weightings of clustered synergies. Black borders are the cluster (Cl.) centroids, 322 

and colored bars (similar to Figure 4) represent the synergy vectors (syn.) that belong to this cluster. 323 

B-E: Violin plots represent the total variance accounted for (tVAF), pearson correlation coefficient 324 

(r), cross-correlation coefficient (rmax) and the lag-time (lag%) for each cluster. Violin plots: each 325 

colored circle represents one participant; thick lines represent mean values; white circles indicate 326 

median values; dark areas indicate quartiles. 327 

 328 
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 329 

Figure 6: All extracted synergy vectors (bar plots) and corresponding activation coefficients 330 

(waveform plots in the same column) for each condition of one participant (P8). Each waveform 331 

represents the activation coefficient of one trial. Bar colors indicate the cluster, which the motor 332 

module belongs to, and are the same as in Figure 4 and Figure 5. 333 

3.2 EMG analysis 334 

Overall trial-to-trial similarity of EMG envelopes measured by r and rmax was significantly affected 335 

by TASK (p < 0.001), with LINE showing the highest correlation, followed by BEAM, and 336 

TIGHTROPE at last (r LINE vs BEAM: p < 0.01; others: p < 0.001). TIME influenced r (p < 0.01) 337 

and rmax (p < 0.05) and contrasts revealed lower r and rmax (p < 0.05) for startBEAM compared to 338 

endBEAM, and an increase in r (p < 0.01) between TRfail and TRsucc. The lag% was significantly 339 
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affected by TASK (p < 0.01), with higher values in TIGHTROPE compared to LINE (p < 0.01). 340 

(Figure 3, Figure 7). 341 

 342 

Figure 7: Muscle activation (example of two muscles) and joint angle waveforms (example of two 343 

joint angles) from one participant (P8). Each waveform represents one trial per condition. vast lat = 344 

vastus lateralis; glut max = gluteus maximus; flex = flexion; ext = extension. 345 

The amount of muscle activation measured by RMS revealed a significant effect of TASK, in all 346 

muscles, apart from soleus (glut_max: p < 0.01; others: p < 0.001). RMS of gast_med was lower in 347 

TIGHTROPE than BEAM (p < 0.05) and LINE (p < 0.001). For the other muscles, RMS was higher 348 

in TIGHTROPE than BEAM (glut_max: p < 0.05; tib_ant, bic_fem: p < 0.01; others: p < 0.001) and 349 

LINE (p < 0.001). In four muscles BEAM was also higher than LINE (rect_fem, multifid: p < 0.05; 350 

per_long, erec_spin: p < 0.01).  There was a significant effect of TIME (rect_fem; bic_fem, 351 
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glut_max: p < 0.05; tib_ant soleus, gast_med, sem_tend, erec_spin: p < 0.01; vast_lat, rec_abd, 352 

ext_obli: p < 0.001), and TASK × TIME (ext_obli: p < 0.05; tib_ant, vast_lat, sem_tend: p < 0.01; 353 

rec_abd, multifid, erec_spin: p < 0.001) on muscle activations. Contrasts revealed a higher muscle 354 

activation in startLINE than endLINE for two muscles (gast_med: p < 0.05, sem_tend: p < 0.01), 355 

startBEAM than endBEAM for four muscles (soleus, rect_fem, rec_abd: p < 0.05; tib_ant: p < 0.01), 356 

and TRfail than TRsucc for ten muscles (tib_ant, soleus, gast_med, erec_spin: p < 0.01; vast_lat, 357 

sem_tend, glut_max, rec_abd, ext_obli, multifid: p < 0.001) (Table 1). 358 

Table 1: Muscle activations (root-mean-square) for all conditions and muscles. M and SD represent 359 

the mean and standard deviation values across all participants. ANOVA revealed significant effects 360 

of TASK in all muscles apart from soleus. Significant differences observed by contrasts are indicated 361 

by *. 362 

 LINE BEAM TIGHTROPE 
 start end start end fail succ 

  M SD M SD M SD M SD M SD M SD 

tib_ant 0.13 0.07 0.14 0.07 0.22* 0.09 0.16* 0.07 0.33* 0.07 0.27* 0.08 

per_long 0.19 0.05 0.17 0.05 0.24 0.04 0.23 0.04 0.37 0.06 0.35 0.07 

soleus 0.26 0.07 0.23 0.07 0.27* 0.06 0.24* 0.04 0.31* 0.10 0.25* 0.08 

gast_med 0.32* 0.06 0.29* 0.06 0.29 0.05 0.27 0.05 0.24* 0.08 0.20* 0.06 

vast_lat 0.14 0.09 0.12 0.07 0.17 0.10 0.15 0.08 0.32* 0.07 0.24* 0.08 

rect_fem 0.05 0.03 0.04 0.02 0.07* 0.04 0.06* 0.02 0.21 0.09 0.17 0.08 

bic_fem 0.09 0.05 0.08 0.07 0.11 0.07 0.11 0.08 0.25 0.08 0.20 0.09 

sem_tend 0.17* 0.09 0.13* 0.08 0.17 0.08 0.16 0.09 0.29* 0.08 0.20* 0.08 

glut_max 0.12 0.05 0.11 0.04 0.15 0.06 0.15 0.05 0.22* 0.09 0.18* 0.08 

rec_abd 0.03 0.03 0.02 0.03 0.05* 0.05 0.04* 0.03 0.17* 0.08 0.10* 0.08 

ext_obli 0.05 0.03 0.04 0.02 0.09 0.06 0.07 0.03 0.23* 0.07 0.17* 0.07 

multifid 0.12 0.04 0.14 0.06 0.17 0.04 0.16 0.07 0.28* 0.04 0.21* 0.06 

erec_spin 0.05 0.02 0.05 0.03 0.10 0.04 0.08 0.05 0.29* 0.03 0.20* 0.05 

 363 

3.3 Kinematic analysis 364 

Overall trial-to-trial similarity of joint angles, quantified by r, rmax and lag%, was significantly 365 

affected by TASK (p < 0.001). LINE exhibited the highest correlations and lowest lag%, followed by 366 

BEAM, and TIGHTROPE (rmax LINE vs BEAM: p < 0.01; lag% LINE vs BEAM: p < 0.05; others: p 367 

< 0.001). There was a significant effect of TIME on r (p < 0.05), with lower r in START compared to 368 

END, and a significant interaction effect of TASK × TIME (p < 0.05). For rmax, TIME had a 369 

significant effect (p < 0.01), with an increase observed between START and END. All contrasts were 370 

significant (p < 0.05). Likewise, lag% was significantly influenced by TIME (p < 0.01). Contrasts 371 

revealed higher lag% in startLINE and TRfail compared to endLINE and TRsucc, respectively (p < 372 

0.05) (Figure 3). 373 

  374 
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4 Discussion 375 

The aim of the study was to increase our insights in motor learning using synergy analysis by 376 

employing a within-participant, within-session study design. We observed higher distinctness and 377 

trial-to-trial similarity of activation coefficients with increasing movement proficiency. Furthermore, 378 

the analyses revealed that the contribution of specific synergies varies across tasks, and muscle 379 

activity decrease throughout the learning process. 380 

Over half a century ago Bernstein [5] proposed, that people restrict the number of degrees of freedom 381 

to simplify coordination in early learning stages. Steele et al. [67] found higher overlapping of 382 

synergy activation coefficients with the occurrence of biomechanical and task constraints. The 383 

current study showed higher tVAF1 and overlapping of synergy recruitment – both indicating higher 384 

coactivation of synergy vectors – in movements with lower proficiency. Taken these findings 385 

together, we suggest that freezing the number of degrees of freedom in early learning is a result of 386 

coactivating synergy vectors. In consequence, high tVAF values might be caused by overlapping 387 

synergy activations and not necessarily mean a simpler motor control due to a decreased number of 388 

synergies. This theory is supported by previous studies on impaired and unimpaired populations. 389 

Clark et al. [16] found similar synergy vectors in locomotion for stroke survivors and unimpaired 390 

individuals, if the same number of synergies were extracted, rather than the number determined by a 391 

tVAF threshold. The authors concluded that not the spatially synergy vectors differ, but they were 392 

computationally merged through the factorization algorithm due to their overlapping recruitment 393 

profiles. Similarly, merging of synergy vectors was found in locomotion of individuals post-stroke 394 

[82] and with Parkinson’s disease [36], and in reaching tasks after cortical lesions [83]. A higher 395 

amount of shared synergies between overground walking and balancing tasks was found in expert 396 

dancers compared to individuals with no dancing experience [8, 27], in post-stroke survivors 397 

compared to unimpaired individuals [84], and after a dance-based rehabilitation in individuals with 398 

Parkinson’s disease [28]. Two of these studies [27, 28] also found lower distinctness of synergy 399 

vectors in groups with fewer shared synergies. The lower distinctness of computed vectors may be a 400 

result of higher overlapping of activation coefficients, which can compromise the accuracy of 401 

extracted synergy vectors. This phenomenon has been observed in previous studies on real and 402 

simulated datasets [62, 66, 67], where increased temporal overlap of activation coefficients led to 403 

merging of synergies due to the underlying assumptions of factorization algorithms. Consequently, 404 

these inaccurately extracted synergy vectors could explain the lower number of shared synergies. In 405 

the current study we also found a low number of shared synergies when computing them separately 406 

for each condition, but similar synergies when computing them over all conditions (see 407 

supplementary material). This suggests that with proficiency overlapping of activation coefficients 408 

reduced, rather than the number of shared synergies changed. This concept should be addressed in 409 

further studies. 410 

An important feature of motor learning is motion fusion, also called coarticulation, which describes 411 

the combination of individual movement primitives into a smooth action. More precisely, the 412 

velocity peaks of two movements gradually disappear during learning. Typically, motion fusion is 413 

assessed by examining velocity peaks in hand trajectories during tasks that involve precise 414 

movements, such as following a specific curvature on a monitor. [85-88]. At first glance, our findings 415 

of higher activation distinctness with proficiency may seem to contradict the concept of motion 416 

fusion. However, further analysis (results not presented) revealed that the timing of velocity peaks in 417 

knee and ankle flexion/extension became more synchronized with higher proficiency. This suggests 418 

that improved coordination of synergy activation timing leads to motion fusion and ultimately results 419 

in smoother movements. Even thought we did not find significant changes in tVAF1 and distinctness 420 
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between TRfail and TRsucc, these factors might change during learning and were potentially not 421 

significantly affected in the current study due to still quite low movement proficiency (4 out of 5 422 

successful attempts) after learning. 423 

Analysis on muscle activations revealed that all muscles apart of the gastrocnemius medialis were 424 

more activated in TIGHTROPE compared to LINE and BEAM. Moreover, the amount of activation 425 

was higher in TRfail than TRsucc for most muscles (Table 1). A decrease in muscle activity during 426 

learning has previously been observed [34, 89]. Keller et al. [90] found reduced H-reflexes after a 427 

slackline training, which could explain less muscle activity with higher proficiency, due to less 428 

coactivation of agonist and antagonist muscles among a joint. In addition to this feedback-theory, we 429 

introduce a feedforward-approach. Our assumption is that synergies that are relevant for specific 430 

subtasks at a given time need to dominate over other synergies that may be activated at similar 431 

timings but are irrelevant to those subtasks. As proficiency increases and there is higher distinctness 432 

among activation coefficients, synergies for the relevant subtasks can be less activated. 433 

The current study revealed a decrease of trial-to-trial variability during learning, and with higher 434 

proficiency (Figure 3). These findings strengthen previous studies on trial-to-trial variability as 435 

outlined in the introduction [19-22, 24, 26, 27]. Regarding the overall trial-to-trial similarity of 436 

synergy vectors, we found a transfer effect of a balancing training on the TIGHTROPE to the 437 

BEAM. However, there were no differences between startLINE and endLINE suggesting that 438 

differences did not occur due to movement-artefacts or sensor-noise. Through cluster analysis we 439 

were able to detect whether changes in variability happen in all synergy vectors and interestingly, 440 

cluster 6 did not reveal any changes in variability due to proficiency or learning. Surprisingly, in 441 

cluster 3, lag% was lowest in TIGHTROPE. An explanation could be, that in order to perform a step, 442 

regardless of the task and proficiency, activation patterns of these synergy vectors have to be quite 443 

specific and do not allow much trial-to-trial variability. On basis of our analyses, we can only 444 

speculate about this feature. The other clusters showed that trial-to-trial similarity increases with 445 

movement proficiency. While we observed an increase of trial-to-trial similarity from startBEAM to 446 

endBEAM and from TRfail to TRsucc in certain clusters, other clusters showed no changes 447 

throughout the learning process. This suggests that early learning is driven by an increase in the 448 

consistency of certain synergies, while other synergies increase their consistency during a later 449 

learning stage, i.e.: with higher proficiency levels. A noteworthy finding from the cluster analysis 450 

was that high trial-to-trial variability did not necessarily correspond to the contributions of synergies 451 

to the task. While most synergies contributed more in TIGHTROPE, cluster 4 - primarily formed by 452 

shank muscles - actually contributed more in LINE. Interestingly, despite its higher contribution in 453 

LINE, cluster 4 also exhibited the highest trial-to-trial variability in TIGHTROPE (Figure 5). 454 

For a more comprehensive understanding of changes in trial-to-trial variability, we also examined 455 

variability of EMG envelopes and joint angles (Figure 3). Overall EMG and joint angle variability 456 

were similar to overall synergy variability regarding task proficiency. Surprisingly, overall trial-to-457 

trial similarity of kinematic data was not only higher with proficiency and after learning, but also in 458 

endLINE compared to startLINE. Therefore, we hypothesize that synergies reflect motor planning 459 

through the central nervous system, while kinematics are more affected by peripherical noise in the 460 

movement execution [18, 19]. 461 

Stance phases duration differed between tasks and between TRsucc and TRfail. Namely, stance 462 

phases were shorter in TRsucc than TRfail (supplementary material). This explains the smoother 463 

synergy activation patterns in LINE and BEAM compared to TIGHTROPE [32] (Figure 6). One 464 

could assume higher trial-to-trail variability in TIGHTROPE as a result of less smoothed activation 465 
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coefficients, but this would not explain variability differences between LINE and BEAM, as stance 466 

duration was not different between these two tasks. To further evaluate if our findings were affected 467 

by the different task durations, we modified the low-pass cutoff frequency for each trial, based on its 468 

duration and repeated our main analyses on synergies. Detailed information and results for the 469 

additional analyses are provided in supplementary materials. Briefly, these analyses showed similar 470 

results according to trial-to-trial similarity and distinctness between the tasks. However, when 471 

comparing TRfail to TRsucc, not only trial-to-trial similarity, but also distinctness of activation 472 

coefficients revealed an increase. In summary, we drew the same conclusions based on the additional 473 

and the main analyses. Namely, fine tuning of synergy recruitment, i.e. increasing trial-to-trial 474 

similarity and activation distinctness, is important for motor learning. We hypothesize that after a 475 

more completed learning process (i.e. all attempts of TIGHTROPE walking are successful) both will 476 

increase even more and precede similar levels like BEAM and LINE. 477 

In the field of motor learning and development three theories are widely discussed [24]. The strict 478 

nativist view proposes that locomotor modules remain robustly conserved into adulthood, supported 479 

by the spatial synergy model [36, 52] and studies observing basic stepping patterns in newborns [91].  480 

The learning hypothesis suggests that unstructured movement patterns are transformed into 481 

structured solutions during development through the interaction between the body and the 482 

environment, evidenced by studies showing high trial-to-trial variability in early learning [19-22, 24, 483 

26, 27]. A combined approach posits the existence of conserved movement patterns enriched with 484 

new patterns to represent a wider range of tasks. This concept has been recently supported by muscle 485 

synergy analysis in locomotion development [24]. In line with this, Cheung et al. [92] observed both, 486 

consistent and variable synergies during running development. Here, we found similar synergy 487 

vectors across tasks. In a subsequently analysis we confirmed this finding, by extracting synergy 488 

vectors separately for each condition. Briefly we found that similar motor control was utilized for all 489 

tasks. A more detailed discussion of this analysis is provided in the supplementary material. Beside 490 

similar synergy vectors, we observed higher variability in their activations in low proficiency levels. 491 

Furthermore, certain synergy vectors showed minimal contribution to LINE and BEAM tasks but 492 

were important for TIGHTROPE, indicating an enrichment of the motor control repertoire. These 493 

findings provide support for the combined nativist and learning theory. 494 

Our study included two notable limitations. Firstly, due to the intra-session design, we captured a 495 

limited number of gait cycles per condition. Oliveira et al. [35] suggested to extract muscle synergies 496 

over a minimum of 20 concatenated steps to account for trial-to-trial variability in movement 497 

execution. To address this, we performed our main analysis on concatenated data of all conditions, 498 

providing a larger sample size of 24 to 30 stance phases per participant. Secondly, we considered the 499 

learning process to be complete when participants successfully walked across the entire tightrope in 500 

four out of five consecutive attempts, which may not reflect a high level of proficiency. Nonetheless, 501 

despite this limitation, we observed significant changes from TRfail to TRsucc in most analyzed 502 

parameters. 503 

In summary, our study aimed to investigate motor learning using synergy analysis through a within-504 

session, within-participant study design. We found that increasing movement proficiency led to 505 

higher distinctness and trial-to-trial similarity of synergy activation coefficients. Our findings suggest 506 

that freezing the number of degrees of freedom in early learning is a result of higher temporal overlap 507 

of synergy recruitment. Furthermore, our results support the notion that variability during the 508 

learning process increases the likelihood of finding the optimal motor command. We conclude that 509 

finetuning of synergy recruitment is crucial for motor learning.  510 
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