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Abstract

Gait asymmetry and skeletal deformities are common in many children with cerebral palsy

(CP). Changes of the hip joint loading, i.e. hip joint contact force (HJCF), can lead to patho-

logical femoral growth. A child’s gait pattern and femoral morphology affect HJCFs. The two-

fold aim of this study was to (1) evaluate if the asymmetry in HJCFs is higher in children with

CP compared to typically developing (TD) children and (2) identify if the bony morphology or

the subject-specific gait pattern is the main contributor to asymmetric HJCFs. Magnetic res-

onance images (MRI) and three-dimensional gait analysis data of twelve children with CP

and fifteen TD children were used to create subject-specific musculoskeletal models and

calculate HJCF using OpenSim. Root-mean-square-differences between left and right

HJCF magnitude and orientation were computed and compared between participant groups

(CP versus TD). Additionally, the influence on HJCF asymmetries solely due to the femoral

morphology and solely due to the gait pattern was quantified. Our findings demonstrate that

the gait pattern is the main contributor to asymmetric HJCFs in CP and TD children. Children

with CP have higher HJCF asymmetries which is probably the result of larger asymmetries

in their gait pattern compared to TD children. The gained insights from our study highlight

that clinical interventions should focus on normalizing the gait pattern and therefore the hip

joint loading to avoid the development of femoral deformities.

Introduction

Gait asymmetry [1] and skeletal deformities [2–4] are common in many children with cerebral

palsy (CP). Children with CP are born with typical bony geometry, but in many patients the

femoral neck shaft angle (NSA) and anteversion angle (AVA) does not decrease during growth

as in typically developing (TD) children [2, 5, 6]. In TD children the NSA and the AVA approxi-

mately decrease from 150˚ to 120˚ [7] and from 40˚ to 15˚ [2, 8] during childhood, respectively.

The pathologic femoral geometry in children with CP affects moment arms of muscles [9],

which might have an impact on the patient’s gait pattern [10]. CP gait differs widely between
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patients and can be classified based on the joint kinematics of the lower limbs e.g. equinus drop

foot gait, jump gait or crouch gait [11]. Gait asymmetries are higher in patient with hemiplegic

CP compared to patients with diplegic CP. However, many children with diplegic CP have a

more affected leg, which can also lead to an asymmetric gait pattern [1].

Bone is adaptive to mechanical loading [12, 13] and the hip joint contact force (HJCF) is

one of the main biomarkers, which determines femoral bone growth [14–16]. Musculoskeletal

simulations can be used to estimate subject-specific HJCF [17]. In a recent simulation study,

Kainz et al. [18] showed that the orientation of the HJCF in the sagittal plane can differentiate

between children with CP who are likely to have typical and pathological femoral growth.

Asymmetric HJCF can alter growth plate loading [19] and therefore lead to asymmetric devel-

opment of bones in length and shape resulting in altered biomechanics. Previous studies

showed that not only the subject-specific gait pattern but also the femoral geometry has a big

impact on the estimation of the HJCF [16, 20–22].

Single event multi-level surgeries, including de-rotation osteotomies, are frequently per-

formed in children with CP to address femoral deformities, enhance their gait pattern, hinder

the progression of additional impairments and normalize joint loadings [23–25]. The femoral

geometry and the gait pattern interrelate with each other, i.e. the geometry influences muscle

moment arms, altered moment arms might change muscle forces and/or the gait pattern

resulting in altered loading which subsequently modifies the femoral growth and geometry.

Considering that both, the gait pattern and femoral geometry, influence joint loads, it is diffi-

cult to assess any cause-effect relationships with traditional experimental studies. Hence, it is

not known if the child’s gait pattern or the subject-specific femoral geometry is the main con-

tributor to asymmetric HJCFs in children with CP. Furthermore, it is unknown if the asymme-

try in HJCFs is higher in children with CP compared to TD children.

The twofold aim of this study was to (1) evaluate if the asymmetry in HJCFs is higher in

children with CP compared to TD children and (2) identify, if the bony femoral morphology

or the subject-specific gait pattern is more associated with asymmetries of HJCFs. We con-

ducted what-if simulations to identify whether normalizing the gait pattern or correcting the

bony geometry is of utmost importance in clinical interventions to normalize joint loadings.

Considering that CP is a disease where both legs can be affected by different severity leading to

gait variations and induced compensation mechanisms on the less affected leg, we hypothe-

sized that the asymmetry in hip loading, i.e. HJCF magnitude and orientation, is higher in chil-

dren with CP compared to TD children. Furthermore, we assumed that the gait pattern has a

bigger impact on asymmetries in HJCF than the subject-specific femoral geometry because the

gait pattern alters ground reaction forces and therefore joint moments at each joint whereas

the femoral geometry, i.e. NSA and AVA, only alters the moment arms of a small number of

muscles.

Methods

Magnetic resonance imaging (MRI) data and three-dimensional gait analysis (3DGA) data

including marker trajectories and ground reaction forces of twelve children diagnosed with

CP (10.4±3.7 years old, height: 133.6±14.9 cm, mass: 30.1±10.1 kg) and fifteen TD children

(10.3±2.6 years old, height: 146.3±11.9 cm, mass: 40.1±14.8 kg) were analyzed for this study.

The data of all CP children and five TD children was captured during a previous study [26]

while the data of the remaining ten TD children was additionally collected for the purpose of

this study. The sample of the newly recorded dataset was planned to match the age of the CP

cohort and to ensure a comparable number of participants in the TD and CP groups. Walking

without an assistant device in daily life was the main inclusion criteria for participants with
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CP. Three and nine of these children were classified as level 1 and 2 based on the Gross Motor

Function Classification System (GMFCS), respectively. Five and seven of the participants were

diagnosed with hemi- and diplegic CP, respectively. Our participants with CP walked with a

variety of pathological gait patterns including true equinus, equinus jump gait, apparent equi-

nus and crouch gait. Further details are provided in S1 Table in the S1 File. None of the TD

participants had any previous major injuries, surgeries or pain at the lower limbs. Ethics

approval was obtained from the local ethics committees (University of Vienna, reference num-

ber 00578). Written informed consent to participate in this study was provided by the partici-

pants’ legal guardian.

Data collection

Data collection of the retrospective analyzed data (CP children and 5 TD children) is described

in detail in Kainz et al. [26]. In short, MRIs of the pelvis and lower limbs were collected using a

1.5 Tesla MRI scanner (MAGNETOM Avanto, Siemens, Berlin/Munich, Germany) with a

voxel size of 1.1x1.1x1.1 mm. Motion capture data were collected using an 8-camera 3D

motion capture system (Vicon Motion Systems, Oxford, UK) with an extended Plug-in-Gait

marker set with additional clusters of three markers on each thigh and shank segment and an

additional marker at the 5th metatarsal head of each foot [27–29]. MRI images of the addition-

ally recorded data (ten TD children) were collected using a 3T magnetic resonance scanner

(MAGNETOM Vida, Siemens, Berlin/Munich, Germany) with a T1 vibe sequence with a

voxel size of 0.8x0.8x0.7 mm. 3DGA-data for these ten TD children were captured on the same

day as the MRI images using a 12 camera motion capture system (Vicon Motion Systems,

Oxford, UK) with a camera sampling frequency of 200 Hz. The used marker set during the

motion capturing was the same as in the retrospective dataset. Simultaneously, ground reac-

tion forces were acquired with 1000 Hz using five force plates (Kistler Instrumente, Winter-

thur, Switzerland). All children performed several gait trials with a self-selected walking speed.

Marker trajectories were captured, labelled, and filtered (Butterworth 4thorder, 6Hz low-pass

filter) in Nexus 2.12.1 (Vicon Motion System, Oxford, UK). The retrospective and prospective

datasets included the same types of experimental data and all further simulations and analyses

were performed with the same workflow for both datasets.

Segmentation of MRIs

All MRIs were segmented using 3D Slicer [30] and each femur was exported as a STL-file. The

STL mesh was subsequently used to compute the NSA and AVA with a customized MATLAB

(Mathworks Inc., Natick, MA, USA) script, described in detail in the supplementary material

of Kainz et al. [16].

Musculoskeletal models

The generic ‘gait2392’ OpenSim model [31] with locked metatarsophalangeal joints was used

as the base model for the subject-specific models. The recently developed Torsion Tool [32]

was used to personalize the femoral geometry of each model to match the child’s NSA and

AVA (personalized model). One additional model (mirrored model) was created for each par-

ticipant where the models’ femoral morphology of the right femur was modified according to

the NSA and AVA of the participants’ left femur and vice versa. This allowed us to calculate

the impact on the asymmetry solely due to the gait pattern and solely due to the femoral mor-

phology, separately (Fig 1).

The personalized models were scaled to the participants anthropometry based on calculated

joint centers (hip: equation from Sangeux [33]; knee: midpoint between medial and lateral
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knee markers; ankle: equation from Bruening [34]) and the location of surface markers [26].

Each leg was scaled independently to account for potential length discrepancies between the

left and right leg. The mirrored model was scaled with the same scale settings. Hence, we had

two models, which were exactly the same except for the femoral morphology and the corre-

sponding muscle paths. The maximum isometric muscle forces of all models were scaled by Eq

1 to improve muscle force estimations [35, 36].

Fscaled ¼ Fgeneric ∗ mscaled =mgeneric

� �ð2=3Þ

ð1Þ

Fig 1. Combination of models and input data for four different simulations (a–d) and five comparisons (1.-5.) to identify the influence on the asymmetry of HJCF

magnitude and its orientation solely due to the participants’ gait pattern (mean of comparison 2. and 3.), solely due to the participants morphology (mean of 4. and 5.) and

the combination of both factors (comparison 1.).

https://doi.org/10.1371/journal.pone.0291789.g001
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Musculoskeletal simulations

All models and the corresponding gait analysis data were used to calculate joint angles, joint

moments, muscle forces and joint contact forces using inverse kinematics, inverse dynamics,

static optimization (minimizing the sum of squared muscle activations) and joint reaction

load analyzes [37], respectively. Knee and ankle joint markers were only used for scaling and

excluded during inverse kinematics. The remaining markers were weighted equally. Maximum

marker errors and root-mean-square errors were accepted if less than 4 cm and 2 cm, respec-

tively, as recommended by OpenSim’s best practice recommendations [38]. On average the

mean waveforms of 8.4±4.1 steps (minimum of 3 steps for each side) were computed for each

parameter and further analyzed. All simulation were performed with MATLAB R2021a and

OpenSim 4.2 [39].

Data analysis

The intra-subject differences of the NSA (ΔNSA) and AVA (ΔAVA) were calculated as the

absolute difference between the values of the left and right side (Eqs 2 and 3). A score to quan-

tify the asymmetry of the intra-subject femoral morphology was calculated by the sum of the

differences in AVA and NSA between the left and right femur (Eq 4) and is further referred to

as morphology asymmetry score (MAS).

ΔNSA ¼ jNSAleft � NSAright j ð2Þ

ΔAVA ¼ jAVAleft � AVAright j ð3Þ

MAS ¼ jAVAleft � AVAright j þ jNSAleft � NSAright j ð4Þ

Walking speed was calculated, normalized to participants’ leg lengths [40] and compared

between both groups. A gait asymmetry score (GAS) was used to quantify differences in joint

angles between left and right leg of each participant. The GAS was calculated similar to the gait

profile score [41] except that we compared joint angles between each participant’s right and

left leg and not between a patient and a healthy control group.

All results of the musculoskeletal simulations were time normalized to the stance phase.

Joint kinematics were reported according to the International Society for Biomechanics’ (ISB)

recommendations [42]. HJCF magnitudes and orientations acting on the femur were calcu-

lated in the sagittal, transversal and frontal plane of the femurs’ coordinate system [43] and

then compared between each participant’s left and right side. Performing the musculoskeletal

simulations for the personalized and the mirrored model resulted in the following four simula-

tions for each participant:

a. left kinematics and left femoral morphology (left steps of personalized model)

b. right kinematics and right femoral morphology (right steps of personalized model)

c. left kinematics and right femoral morphology (left steps of mirrored model)

d. right kinematics and left femoral morphology (right steps of mirrored model)

Subsequently, for each participant HJCF asymmetries were quantified by calculating root-

mean-square-difference (RMSD) between the extracted waveforms (HJCF magnitude and ori-

entation during stance phase) of different simulations. The following five comparisons

between the different simulations were used to quantify HJCF asymmetries and the impact of

each child’s gait pattern and femoral morphology on HJCF asymmetries (Fig 1):
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1. RMSD of simulations a) and b) to identify the combined impact of morphology and gait

pattern on HJCF asymmetries

2. RMSD of simulations a) and d) to identify the impact of the gait pattern on HJCF

asymmetries

3. RMSD of simulations b) and c) to identify the impact of the gait pattern on HJCF

asymmetries

4. RMSD of simulations a) and c) to identify the impact of the morphology on HJCF

asymmetries

5. RMSD of simulations b) and d) to identify the impact of the morphology on HJCF

asymmetries

Statistics

One-sided independent samples t-tests were used to compare the NSA, AVA, the intra-subject

difference of NSA (ΔNSA) and AVA (ΔAVA) and MAS between the CP and TD group.

Two between-within 2x3x2 ANOVAs were performed with SPSS Statistics 28.0 (IBM, New

York, USA) to answer our research questions, i.e. identify significant differences in HJCF

asymmetries (i) between CP and TD children and (ii) caused by the morphology versus the

gait pattern. The cohort (CP versus TD) and the contribution (due to morphology versus due

to gait pattern) were independent variables and the component/angle in 3 directions/planes of

the HJCF were dependent variables. For pairwise comparisons, post-hoc Bonferroni correc-

tion was applied and Greenhouse-Geisser corrected values were used, if sphericity was vio-

lated. Additional independent t-tests were used to compare the combined influence of the

morphology and the gait pattern on HJCF asymmetries between CP and TD children. For all

tests, the significance level was set to p<0.05. Post-hoc power analyses were performed with

GPower 3.1.9.7 [44] to quantify the statistical power of our main findings related to our

research questions.

Furthermore, we evaluated if there are significant linear regression correlations between the

asymmetry in femoral morphology (ΔNSA, ΔAVA and MAS) and the asymmetry of HJCF

magnitude and/or orientation. Results and discussion of these additional analysis can be found

in the S1 File.

Results

Femoral morphology

The NSA (134.3±6.9˚) and ΔNSA (4.9±3.5˚) of the CP group were significantly higher

(p<0.05) than the values of the TD group (NSA 130.9±3.5˚, ΔNSA 2.6±1.5˚). The AVA was

significantly higher (p<0.01) in TD (29.7±8.8˚) compared to CP children (22.3±10.2˚), but

ΔAVA did not differ between both groups. The MAS was significantly lower (p<0.05) in TD

participants (7.0±4.1˚) compared to participants with CP (11.9±9.1˚) (Fig 2).

Gait pattern and HJCF

The CP group walked significantly slower (p<0.01) than the TD group but walking speed nor-

malized to leg length was not significantly different between both groups (Fig 3). Joint angles

and HJCF during the gait cycle of TD participants were similar between both legs, whereas in

some children with CP joint angles as well as HJCF differed vastly between the left and right
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Fig 2. Comparison of the NSA, the AVA, the corresponding asymmetries (ΔNSA and ΔAVA) and the MAS between the CP and the TD

group.

https://doi.org/10.1371/journal.pone.0291789.g002

Fig 3. Comparison of the walking speed and the GAS between the CP and the TD group.

https://doi.org/10.1371/journal.pone.0291789.g003
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side (Figs 4 and 5). The GAS was significantly higher (p<0.001) in CP (10.4±4.7˚) compared

to TD participants (4.5±1.5˚).

Asymmetries in HJCF magnitude (anterior, inferior and resulting) and orientation (all

planes) were significantly larger (p<0.05, effect size = 0.9±0.26, power = 0.69±0.17 for HJCF

magnitude; p<0.05, effect size = 1.26±0.17, power = 0.92±0.06 for HJCF orientation) in CP

compared to TD participants (Fig 6). In both groups (TD and CP), the gait pattern had a sig-

nificantly larger (p<0.001, effect size = 2.48, power>0.99 for HJCF magnitude; p<0.05, effect

size = 0.73, power>0.99 for HJCF orientation) impact on asymmetries in HJCF magnitudes

and orientations compared to the morphology. For the HJCF orientation, a significant interac-

tion effect (p<0.05) was observed showing that in the CP group the gait pattern has an even

higher contribution to the HJCF asymmetry than the femoral morphology.

Fig 4. Mean HJCF represented in femurs’ coordinate system and joint angles during the gait cycle presented for TD children and HJCF and joint angles of a

representative child with CP. CP01 was the participant with the lowest GAS. Figures with the gait kinematic waveforms of each participant with CP are included

in the S1 File.

https://doi.org/10.1371/journal.pone.0291789.g004
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Discussion

The purpose of this study was to comprehensively analyze HJCF asymmetries in children with

CP and TD children and to evaluate if the subject-specific gait pattern or the femoral morphol-

ogy is the main contributor to these asymmetries. In general, HJCF asymmetries were signifi-

cantly higher in CP compared to TD children except for the medial/lateral component. In

agreement with our hypothesis, the gait pattern had a larger influence on the HJCF asymmetry

than the femoral morphology in both groups.

As anticipated, our findings showed that HJCF asymmetries are higher in CP compared to

TD children. We expected this finding due to higher gait asymmetries in CP compared to TD

children [11]. The standard deviations in HJCF asymmetries in the CP group were very high

which indicates that some participants were similar to the TD group and others were far out-

side the TD range. This is in agreement with previous work [18], which showed that some

Fig 5. Mean HJCF represented in femurs’ coordinate system and joint angles during the gait cycle presented for TD children and HJCF and joint angles of a

representative child with CP. CP09 was the participant with the highest GAS. Figures with the gait kinematic waveforms of each participant with CP are included

in the S1 File.

https://doi.org/10.1371/journal.pone.0291789.g005
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children with CP have typical HJCF, whereas others have HJCF outside the TD range. Future

work based on a larger cohort of CP participants is needed to identify how different pathologi-

cal gait pattern, e.g. in-toing gait or crouch gait, or CP diagnosis, e.g. hemiplegic or diplegic

CP, affect HJCF asymmetries.

The overall femoral asymmetry, i.e. MAS, was as expected higher in children with CP com-

pared to TD children. Furthermore, the NSAs were significantly higher in CP compared to TD

participants. However, against our expectation based on previous studies [2, 45], the AVAs

were significantly lower in our CP compared to our TD participants. Typically, the AVA

decreases with age in TD children and remains higher in children with CP [2, 45]. There was

no significant difference in age between our CP and TD groups, which could explain the

observed difference. The AVAs of our TD participants were within the range of TD values

reported in a study based on 508 participants [46]. Hence, we assume that the low number of

participants in our study is responsible for the observed higher AVAs in our TD compared to

our CP participants.

In children with CP single event multi-level surgeries including de-rotation osteotomies

and muscle-tendon-lengthening surgeries are often used to correct femoral deformities,

improve the child’s gait pattern and prevent the development of further deformities [23–25].

The gained insights from our study suggest that normalizing the gait pattern should be a high

priority of clinical interventions and might be even more important than correcting the bony

deformities. However, de-rotation osteotomies normalize the lever arms of muscles [23, 24],

which might be necessary to enable a typical walking pattern. Hence, clinical interventions

should target static, anatomical impairments, i.e. bony deformities, and dynamic, functional

impairments, i.e. pathological gait pattern. Based on our findings, solely the correction of bony

Fig 6. Contribution of the femoral morphology (blue), the gait pattern (green) and the combined contribution of morphology and gait pattern (red) on the

asymmetry of HJCF magnitude and orientation during the stance phase.

https://doi.org/10.1371/journal.pone.0291789.g006
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deformities is unlikely to stop the development of further deformities. Therefore, an interven-

tion should only be judged successful if the gait pattern improves additionally to the anatomi-

cal correction. Yadav et al. (2021) performed predictive simulations based on a

mechanobiological model and concluded that the posterior and the lateral HJCF components

highly affect the change of the NSA and AVA. Hence, a normalization of these HJCF compo-

nents seems to be of high importance. Further studies are needed to identify which gait modifi-

cations and clinical interventions could achieve the desired normalization of the HJCF.

Our study included the following limitations. First, only the femoral morphology was per-

sonalized in our musculoskeletal models. Tibial morphology could not be personalized

because MRI images of the tibia were not available for all participants. Changes of tibial geom-

etry alters the moment arms of the shank muscles and consecutively has an impact on the esti-

mation of muscle and knee joint contact forces. Due to the bottom-up approach used to

estimate joint contact forces in OpenSim [37], changes in the knee joint contact force would

also affect HJCF. However, tibial torsion only affects lever arms of a limit number of muscles

and therefore we assume the impact on HJCF is negligible. Further studies which investigate

the impact of tibial torsion on HJCF should be carried out to verify our assumption. Second,

the HJCF could not be measured in-vivo and therefore were estimated with musculoskeletal

simulation. The shape and magnitude of our HJCF were, however, in agreement with previous

studies [16, 18, 47–49]. Third, although we showed that the gait pattern has a larger influence

on HJCF than the femoral morphology, it has to be mentioned that the femoral geometry itself

influences the moment arms of several hip muscles [9, 50, 51] and therefore might be the rea-

son why some children are not able to walk with a typical walking pattern [10]. Fourth, mean

kinematic and kinetic waveforms were calculated based on a different number of trials

between participants due to a low number of valid force plate strikes in some children with

CP. Although this is standard practice in clinical and research settings [52], it potentially had a

small impact on the obtained mean waveforms. Fifth, our intention was not to find the cause

of femoral deformities but to identify the main contributor to asymmetric HJCFs. Pathological

gait patterns alter the HJCF which is the main biomarker that determines femoral bone growth

[14–16, 18]. Future studies including predictive musculoskeletal and mechanobiological simu-

lations [18, 53] are needed to comprehensively evaluate the impact of femoral morphology on

the walking ability and investigate the reasons for femoral deformities.

To conclude, this study comprehensively analyzed HJCF asymmetries in CP and TD chil-

dren and identified the contribution of subject-specific femoral morphology and gait pattern

to the asymmetry of hip loading. The asymmetric gait pattern had a larger influence on HJCF

asymmetries than the asymmetric femoral morphology. Gait asymmetries and therefore also

HJCF asymmetries were larger in CP compared to TD participants. Bone is adaptive to

mechanical loading [12, 54–56] and pathological HJCF will likely lead to pathological femoral

growth [18]. Hence, in patients with femoral deformities it is of utmost importance to correct

the functional impairment, i.e. patient-specific gait pattern, with the aim to normalize loading

and femoral growth. Whether normalization of the gait pattern can be achieved solely with

physical therapy (e.g. gait retraining) or in combination with surgical interventions depends

on the individual patient and was beyond the scope of our study. However, our findings high-

light that pre- and post-intervention gait analysis should be performed to evaluate the success

of an intervention.

All musculoskeletal models and the simulation results are published on https://simtk.org/

projects/bone_gait_load to allow peers to further investigate the data.
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