
regime [7]. Morphometric analyses in patients might increase our
insight in femoral morphology and potentially improve clinical
treatment in the future.
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Introduction

The muscle synergy theory posits that a limited set of spatially
fixed synergy vectors is activated through central commands –
known as activation coefficients [1]. Recent studies showed that
the trial-to-trial variability of temporal activation coefficients plays a
crucial role in movement control [2, 3].

In everyday life, we face a lot of psychological stressors,
commonly induced by situations of social threat [4]. It has been
demonstrated that posture and movement are strongly influenced in
situations of stress. For instance, acute stress led to freezing gait
behaviors [5] and changes of temporal and spatial gait parameters
[6]. However, the impact of acute stress on muscle synergies remains
uncertain.

Research Question

Is the trial-to-trial variability of temporal-spatial gait parameters
and synergy activation coefficients influenced by psychological
stress?

Methods

Eight participants (23.7 ± 2.8 years) performed two walking
conditions on a treadmill with self-selected and constant velocity in a
randomized order: normal walking (NORM) and walking under
psychological stress (STRESS). The Paced Auditory Serial Addition
Task [7] was employed to induce stress. Electrodermal activity
electrodes (Shimmer3 GSR+ Unit) measured tonic skin conduc-
tance, force insoles (Novel, Germany) determined foot contacts, and
surface electromyography electrodes (Cometa, Italy) recorded the
activations of 4–7 muscles on each leg. The participants’ stress level
was characterized by the averaged z-normalized values of processed
(PhysioData Toolbox) tonic skin conductance signals. The stance-
phase to gait-cycle ratio was used to determine the temporal-spatial
aspect of gait, with the coefficient of variation among steps char-
acterizing trial-to-trial variability. Filtered, rectified, time and
amplitude-normalized electromyography signals from both
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conditions were concatenated to extract muscle synergies via non-
negative matrix factorization [8]. The knee-point of the total
variance accounted for curve determined the number of required
synergies [9]. The trial-to-trial variability of synergies was calcu-
lated as the average Pearson correlation coefficient (z-transformed
[10]) of all pairwise combinations of activation coefficients from
different gait cycles within each synergy for each condition [2].
Paired t-tests assessed differences between NORM and STRESS for
the stress level, temporal-spatial gait variability, and activation
coefficient variability.

Results

Participants exhibited higher stress levels (p < 0.01) and
increased temporal-spatial gait variability (p < 0.05) in STRESS
compared to NORM. Three to seven synergies were required to
perform the walking tasks. No significant difference was observed
for the variability of synergy activation coefficient (Figure 1).

Figure 1: Dashed lines = individual participant. Thick line = mean
and standard deviation across participants.

Discussion

In line with previous studies [6], our results showed that
psychological stress increases the trial-to-trial variability of the
temporal-spatial gait parameter, therefore decreasing movement
consistency. Surprisingly, the trial-to-trial variability of synergy
activation coefficients was not different between NORM and
STRESS. This suggests that, regardless of movement alterations
during stress, the underlying movement control mechanisms remain
unaffected.
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Introduction

Sitting behavior in developing children is highly variable, and
loads are variably distributed to lower extremity joints such as the
hip and pelvis. Depending on sitting behaviors, loads are applied to
the hip and pelvis in three planes, which can slightly influence the
musculoskeletal structure around the proximal femur over time.
Slight musculoskeletal changes on the hip and pelvis can alter
walking biomechanics. Therefore, the purpose of the study is to
investigate the relationship between sitting behavior, rotational hip,
pelvis kinematics during walking in typically developing
adolescents.

Research Question

How does different sitting postures affect typically developed
adolescents' rotational pelvic and hip kinematics during walking?

Methods

7 healthy [Age: 21,14 ± 1.46, height:160,78 ± 6.10 cm, weight:
54,6 ± 4.97 kg Bmi:20,74 ± 1.21 kg/m2] volunteers participated in
the study. Families were requested to provide photographs of their
childhood (1-5y,o) sitting positions on the floor by sending photo-
graphy. According to hip rotations, sittings were divided into
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