
referenced to head sways, Condition4: standing on foam/walking
with foam insoles with eyes open. Condition5: standing on foam/
walking with foam insoles with eyes closed. Condition6: standing on
foam/walking with foam insoles while the VR screen sways as
referenced to head sways. Each condition will be randomized and
performed for 1 minute (4,5). The center of mass (CoM) will be
estimated for both standing and walking tests. The agreement and
correlation between standing SI and UHLSINT will be investigated
by calculating the kappa coefficient and Pearson correlation. The
Intraclass Correlation Coefficient (ICC) will be calculated to assess
the test-retest reliability of the UHLSINT.

Results

NA

Discussion

This study protocol provides detailed information on the devel-
opment of an SI test during the dynamic task of walking, namely
UHLSINT. UHLSINT may provide deeper insight into the SI mechan-
ism under different conditions in different age groups. Subsequently,
the findings may have further implications on the underlying sensory
mechanisms explaining fall risk and fall prediction in older adults.
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Introduction

As bones develop during ontogeny, they not only increase in size
but also adapt their shape in response to the loading environment
[1–5]. Multi-scale simulations based on cross-sectional data have
been used to estimate growth plate loading and differentiate
between healthy and pathological femoral growth [6–12]. However,
no studies have compared growth plate morphology, femoral loading
and multi-scale predictions with longitudinal changes in femoral
shape measured from medical images.

Research Question

Do femoral loads, growth plate orientation and growth rates from
multi-scale simulations vary between children with different growth
patterns?

Methods

Magnetic resonance images (MRI) and 3D gait analysis data of
ten typically developing children was collected at two occasions two
years apart (age: first session 9.9±0.9 years). Femoral anteversion
angle (AVA) and neck-shaft angle were measured from the MRIs by
two experienced researchers to ensure high reliability [13]. Perso-
nalized MRI-informed musculoskeletal models were used to estimate
muscle forces and joint contact forces (JCF) [14,15] and used as
input for the multi-scale simulations to predict femoral growth [6,7].
Participants were grouped depending on their change of AVA
between data collection sessions. Lower limb kinematics, muscle
forces, hip and knee JCF as well as their orientations during the gait
cycle, growth plate orientation and growth rates from the multi-scale
predictions were compared between two groups, one with low AVA
changes (AVA<µ-σ) and one with large AVA changes (AVA>µ+σ).
Statistical parametric mapping [16] was used to compare waveforms
between groups.

Results

Children grew 13.5±3.3 cm (range: 9-20 cm) and gained 8.2
±3.2 kg of body mass during the two years. Participants’ AVA
changed between -13.1° and 11.8° (mean: -1.3±5.8°) between
sessions. Grouping identified three femurs exhibiting high AVA
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increase, four femurs with high AVA decrease and thirteen femurs
with normal AVA development (Figure 1A). Growth plate orienta-
tion (Figure 1B), joint kinematics, muscle forces, JCF (Figure 1C) and
their orientations did not show any significant differences between
groups. Multi-scale-predictions and measurements of AVA develop-
ment showed significant correlation (p=0.002) (Figure 1D). The
regions with highest mean growth rates differed and values within
the medial region were significantly different between “increase”
and “decrease” groups (p=0.03).

Discussion

Despite the fact that no significant differences were found in joint
kinematics, femoral loading and growth plate orientation, multi-
scale simulations were sensitive enough to identify differences
between groups and predict AVA development with reasonable
accuracy. Our results highlight that femoral growth is influenced
by a complex interplay between gait pattern, femoral morphology
and internal loading. Our preliminary results, based on healthy
children, suggest that multi-scale simulations are able to discrimi-
nate between different growth patterns. However, longitudinal
simulation studies including a larger sample size and individuals
with pathological growth are needed to further increase our insights
in typical and pathological femoral growth.
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